
TECHNICAL NOTE 30440

Improved in-situ δ^7 Li analysis of synthetic glass by LA-MC-ICP-MS with 10¹³ Ω amplifier technology

Authors

Grant Craig, Hauke Vollstaedt, Nicholas Lloyd, Claudia Bouman, Johannes Schwieters

Thermo Fisher Scientific, Bremen, Germany

Keywords

 $\delta^7 Li$, Isotope Ratio, Laser Ablation, Lithium, Neptune Plus MC-ICP-MS, 10¹³ Ω Amplifier, Transient Signal Analysis

Abstract

The application of $10^{13} \Omega$ amplifier technology to lithium isotope ratio analysis by LA-MC-ICP-MS is demonstrated to improve precision at typical lithium concentrations for geological materials.

Introduction

Lithium (Li) has two stable isotopes, ⁶Li (7.5% natural abundance) and ⁷Li (92.5%). The large mass difference between the two isotopes leads to a large (>60‰) observed isotopic fractionation in nature. As such Li isotope analysis is a useful environmental tracer of a variety of low (e.g. surface weathering) and high temperature (e.g. crust-mantle recycling) geochemical processes.

Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is used to measure the Li isotopic composition of prepared solutions which are however, time consuming to produce. The in-situ measurement of Li isotopic compositions by coupling laser ablation (LA) to MC-ICP-MS¹⁻³ not only reduces sample preparation, but allows spatial resolved analysis. However, as Li is only present in trace amounts (typically a few µg/g) in many geological materials, LA-MC-ICP-MS measurements are challenging due to the low measured intensity (1-20 mV, 63-1250 kcps) of ⁶Li. Amplifiers incorporating 10¹³ Ω resistors, a recent development in MC-MS,⁴⁻⁵ extend the operating range of Faraday cup detectors to cover such small ion intensities. Compared to the standard 10¹¹ Ω amplifier, the signal to noise ratio of the 10¹³ Ω amplifier is improved by 4 to 5 fold,⁶ which is reflected in the precision achieved at low signal intensities. The ⁷Li/⁶Li analysis of synthetic glasses by LA-MC-ICP-MS demonstrates the improvements in accuracy and precision for low intensity ion beams afforded by 10¹³ Ω amplifiers.

Method

The Thermo Scientific[™] Neptune Plus[™] MC-ICP-MS was coupled to a Teledyne Photon Machines Analyte G2[™] excimer laser with 193 nm wavelength. The laser was equipped with a HelEx[™] II two-volume ablation cell. Operating conditions for both the Neptune Plus MC-ICP-MS and Analyte G2 are given in Table 1. Li isotope ratio analysis (⁷Li/⁶Li) was performed on six synthetic MPI-DING glasses (T1-G, ATHO-G, GOR132-G, StHs/680-G, KL2-G and ML3B-G). A seventh MPI-DING glass, GOR128-G was used as the external standard. 5 individual spot ablations were made on each glass, bracketed by 2 spots on the external standard. A 60 s on-peak baselines was measured between each ablation. The analysis was performed twice, once with 10¹¹ Ω and once with 10¹³ Ω amplifiers.

Li isotope ratios are typically reported in delta notation relative to the National Institute of Standards and Technology (NIST[™]) reference material SRM[®]8545.

$$\delta^7 Li_{SRM8545} = \left(\frac{{}^7 Li/{}^6 Li_{sample}}{{}^7 Li/{}^6 Li_{SRM8545}} - 1\right) \times 1000$$

A wide range of $\delta^7 Li_{\text{SRM8545}}$ values have been reported for the MPI-DING glasses (e.g. ATHO-G, 3.9 – 17.1‰), hence $\delta^7 Li$ values were calculated relative to the external standard GOR128-G only and not related back to $\delta^7 Li_{\text{SRM8545}}.$

Results

Data analysis was performed within lolite[™] v3.4, built on the software platform Igor Pro[™] v6.37 (WaveMetrics, Inc., USA), using a custom data reduction scheme. Five seconds were cropped from the start and end of each 30 s ablation.

The measured ⁶Li sample signal ranged from 2.1 – 13 mV and was 5.3 mV for the external standard GOR-128-G (Li concentration 10.4 ppm).⁷ The baseline was approximately 200 μ V for ⁶Li. For all six MPI-DING glasses using the 10¹³ Ω amplifiers resulted in significant improvements in both internal

Table 1. Experimental configuration of the laser ablation and MC-ICP-MS systems. ⁶Li was measured in the L5 cup position, and ⁷Li in the H4 cup position. A dummy mass of 6.512 was placed in the center cup.

Parameter	Value	Parameter	Value		
Analyte G2 [™] Laser Abl	ation	Neptune Plus MC-ICP-MS			
Fluence (J cm ⁻²)	2.36	Cool Gas (L min-1)	16		
Repetition Rate (Hz)	10	Auxiliary Gas (L min-1)	0.95		
Spot Shape	Circle	Sample Gas (L min-1)	0.915		
Spot Size (µm)	85	Power (W)	1200		
Duration (s)	30	Skimmer Cone	Х		
He Outer Cell (L min ⁻¹)	0.60	Sample Cone	Jet		
He Cup Flow (L min ⁻¹)	0.4	Resolution	Low		
N ₂ Addition (mL min ⁻¹)	0.0	Integration Time (s)	0.524		

and external precision (Table 2). KL2-G and ML3B-G, with the lowest concentrations of Li,⁷ observed a four to fivefold reduction in both internal and external 2SD. At 28.0 – 30.4 ppm ATHO-G had the highest concentration of the MPI-DING. Even at this elevated concentration and signal the 10¹³ Ω amplifiers resulted in at least a threefold improvement in precision.

Using the better ⁷Li/⁶Li precision achieved with the 10¹³ Ω amplifiers, the two Komatiite glasses, GOR128-G and GOR132-G, could be distinguished from each other (Figure 1). StHs6/80-G and ATHO-G could now also be identified as having different Li isotopic compositions by using 10¹³ Ω amplifier technology.

For the smallest intensity ion beams, KL2-G and ML3B-G, using the 10¹³ Ω amplifier introduced a large shift (\approx 5‰) in the measured mean δ^{7} Li value (Table 2; Figure 2). Smaller shifts were detected with T1-G and GOR132-G. It is concluded that the high uncertainty at low count rates with the 10¹¹ Ω amplifiers introduced a positive bias to the measured ⁶Li signals and therefore changing the calculated mean ratio.

Table 2. Li isotope ratio analysis of 6 reference MPI-DING glasses. GOR128-G, was used as the external standard (δ^7 Li = 0.0). Operating conditions are given in Table 1, n = 5. Five seconds were cut from the beginning and end of each ablation, resulting in 40 cycles per ablation.

Sample		Li conc. ⁷	⁶ Li	⁷ Li/ ⁶ Li - 10 ¹¹ Ω	⁷ Li/ ⁶ Li - 10 ¹³ Ω	δ ⁷ Li _{gor128-g} - 10 ¹¹ Ω	$\delta^7 \text{Li}_{\text{GOR128-G}}$ - 10 ¹³ Ω
ATHO-G	Mean	30.4 ppm	13 mV (812 kcps)	11.988	11.964	-14.99 ± 1.33	-16.93 ± 0.30
	Internal 2SD (‰)			1.38	0.44		
	External 2SD (‰)			1.35	0.31		
KL2-G	Mean	5.1 ppm	2.7 mV (169 kcps)	12.033	12.006	-11.25 ± 6.62	-13.46 ± 3.45
	Internal 2SD (‰)			6.13	1.43		
	External 2SD (‰)			6.69	3.50		
ML3B-G	Mean	4.5 ppm	2.1 mV (131 kcps)	12.062	11.979	-8.87 ± 9.00	-15.73 ± 1.16
	Internal 2SD (‰)			9.23	1.72		
	External 2SD (‰)			9.09	1.18		
StHs6/80-G	Mean	20.7 ppm	8.8 mV (550 kcps)	11.943	11.929	-18.65 ± 2.72	-19.82 ± 0.79
	Internal 2SD (‰)			2.18	0.48		
	External 2SD (‰)			2.77	0.81		
T1-G	Mean	19.9 ppm	8.9 mV (556 kcps)	11.967	11.945	-16.66 ± 2.98	-18.45 ± 1.58
	Internal 2SD (‰)			2.02	0.55		
	External 2SD (‰)			3.03	1.61		
GOR132-G	Mean	8.9 ppm	4.7 mV (294 kcps)	12.129	12.121	-3.34 ± 2.64	-4.06 ± 0.91
	Internal 2SD (‰)			3.54	0.78		
	External 2SD (‰)			2.65	0.91		

Conclusion

Due to the low abundance of Li in geological materials, more precise δ^7 Li values can be obtain for LA-MC-ICP-MS by employing 10¹³ Ω amplifiers. The ± 0.31‰ (2SD) precision achieved for MPI-DING silicate glass ATHO-G represents an approximately fourfold improvement over both the 10¹¹ Ω amplifiers (± 1.37‰) and published values (± 1.2‰).³ Similar enhancements in precision were observed for all the MPI-DING glasses.

Acknowledgements

grant agreement number [608069].

G. Craig acknowledges the IsoNose Initial Training Network funded by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA

References

- 1. P. J. le Roux, J. Anal. At. Spectrom., 2010, 25, 1033-1038.
- J. I. Kimura, Q. Chang, T. Ishikawa and T. Tsujimori, J. Anal. At. Spectrom., 2016, 31, 2305–2320.
- J. Lin, Yongsheng Liu, X. Tong, L. Zhu, W. Zhang and Zhaochu Hu, J. Anal. At. Spectrom., 2017, 32, 834–842.
- J.-I. Kimura, Q. Chang, N. Kanazawa, S. Sasaki and B. S. Vaglarov, J. Anal. At. Spectrom., 2016, 31, 790–800.
- M. Pfeifer, N. S. Lloyd, S. T. M. Peters, F. Wombacher, B.-M. Elfers, T. Schulz and C. Münker, *J. Anal. At. Spectrom.*, 2017, *32*, 130–143.
- J.-F. Wotzlaw, Y. Buret, S. J. E. Large, D. Szymanowski and A. von Quadt, J. Anal. At. Spectrom., 2017, 32, 579–586.
- K. P. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll and A. W. Hofmann, Geostandards and Geoanalytical Research, 2005, 29, 333-338.

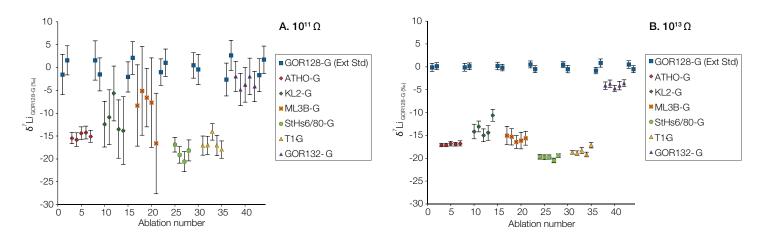


Figure 1. δ^7 Li analysis of 6 reference MPI-DING glasses by LA-MC-ICP-MS. Another MPI-DING reference glass, GOR128-G, was used as an external standard (δ^7 Li = 0.0). Error bars represent 2SE uncertainty (n = 40). (A.) δ^7 Li measured on Faraday detectors connected to 10¹¹ Ω amplifiers. (B.) δ^7 Li measured on Faraday detectors connected to 10¹³ Ω amplifiers.

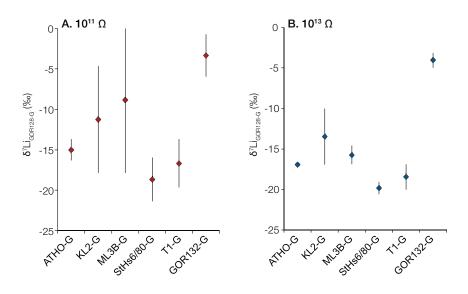


Figure 2. Mean δ^7 Li of 6 reference MPI-DING glasses (n = 5). GOR128-G, was used as the external standard (δ^7 Li = 0.0). Error bars represent 2SD. (A.) δ^7 Li measured on Faraday detectors connected to 10¹¹ Ω amplifiers. (B.) δ^7 Li measured on Faraday detectors connected to 10¹³ Ω amplifiers.

Find out more at www.thermofisher.com/irms

©2018 Thermo Fisher Scientific Inc. All rights reserved. HeIEx II, Teledyne Cetac Technologies, Teledyne Photon Machines and Analyte G2 are trademarks of Teledyne Instruments, Inc. Igor Pro is a trademark of Wavemetrics Inc. SRM and NIST are trademarks of National Institute of Standards and Technology, USA. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representatives for details. **TN30440-EN 0118S**

